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This paper considers the active control of stationary random disturbances in
single-input}single-output vibrating and acoustical systems. Both feedforward and feedback
control are studied using a deterministic approach, where white noise is replaced by an
impulse so that the active control of a stationary random disturbance is transformed to the
active control of an impulse response. A theoretical framework using the Wiener "lter to
study both systems is described where internal model control is used to convert a feedback
system into feedforward architecture. The e!ects of the constraint of causality on the
performances of feedforward and feedback control of random disturbances are discussed
using two simple examples; a minimum phase single-degree-of-freedomvibrating system and
a non-minimum phase acoustical system.
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1. INTRODUCTION

In recent years, the active control of sound and vibration has become a reality. There has
been signi"cant success in controlling harmonic disturbances and more recently, random
disturbances. Feedforward control has generally been used for harmonic disturbances, and
feedback control for random disturbances if a suitable reference signal is not available.
There have tended to be di!erent approaches to these problems, but there is some value in
studying them in a uni"ed framework that facilitates physical insight into control
mechanisms and performance limitations. Using Wiener "lter theory helps in this quest.
The theory o!ers the optimal "lter which minimizes the mean square error in a stationary
random signal environment, and was "rst developed by a mathematician, Wiener [1]. Its
engineering applications and analytical solutions are well established; see for example, Van
Trees [2] and Popoulius [3] for analogue "lters, and Orfanidis [4] for digital "lters. As
discussed by Kailath [5], the theory has been most in#uential in the areas of signal
processing and control, and its applications cover the areas of signal estimation,
communication, and stochastic control theories etc.

A critical issue in the design of random disturbance controllers, which does not occur for
deterministic disturbances, is the constraint of causality. The constraint should be satis"ed
for the controller to be physically realizable (causal stable), and is the key to understanding
the mechanisms and limitations of the active control of random noise and vibration. The
optimal controller for random disturbances is the causally constrained Wiener "lter and the
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optimal controller for harmonic disturbances is the causally unconstrained Wiener "lter
[6, 7]. Nelson et al. [7] presented a theoretical framework to design the optimal controller
to minimize stationary random sound in the mean square sense. A numerical model has also
been presented by Joplin and Nelson [8], who minimized the acoustic potential energy
inside a cavity excited by white noise. An analytic solution procedure in the discrete
time domain was later presented by Nelson [9] using the spectral factorization technique.
Although white-noise excitation was generally assumed for such analytical studies
[7}9], the problems were treated, rather complicatedly, as stochastic optimal control
problems.

This paper describes a theoretical study into the feedforward and feedback active control
of single-input}single-output (SISO) vibrating and acoustical systems subject to white-noise
excitation. The uni"ed theoretical framework uses Wiener "lter and internal model control
to convert the feedback systems into a feedforward architecture [10]. Although only SISO
systems are discussed here, the methodology can be applied to multi-input}multi-output
vibrating and acoustical systems [11]. A deterministic approach is presented by replacing
white noise by an impulse [2, 12], so that the active control of stationary random
disturbances becomes the problem of the active control of an impulse response. This
facilitates analysis using deterministic rather than stochastic methods enabling better
interpretation of the control mechanisms. Even though this approach may be limited in
terms of practical applications, because most disturbances are neither stationary nor white,
it enables an easier investigation into the e!ects of the constraint of causality. Moreover, the
use of an impulse instead of white noise is advantageous since a numerical realization of
white noise is time consuming and thus it is particularly useful in the investigation of
MIMO active control systems [11, 12].

The aim of the paper is to use the combination of the Wiener "lter and the deterministic
approach in a uni"ed framework to study the feedforward and feedback control of a simple
minimum phase vibrating system and a non-minimum phase acoustical system. The e!ects
of the constraint of causality are investigated using this approach and insight into control
mechanisms and limitations of stochastic optimal control are presented. The paper is
organized as follows. Following this introduction, Wiener "lter theory is reviewed brie#y in
section 2, and the Wiener "lter approach to feedforward and feedback active control
techniques is presented in section 3. Two simple examples of minimum and non-minimum
phase systems are presented in sections 4 and 5, respectively; a single-degree-of-freedom
vibrating system and an acoustic duct. The paper is concluded in section 5, and Appendix A
describes the discrete-time formulation of the Wiener "lter problem.

2. REVIEW OF WIENER FILTER THEORY

The Wiener "lter is the optimal controller for minimizing stationary, ergodic random
disturbances. The control problem to be solved, which is represented in block diagram form
in Figure 1, is to "nd an optimum causal, stable "lter with impulse response h

o
(t) which

minimizes the error signal e(t) in the mean square sense. The mean square error is written as
J"E[e2(t)] where E[f] denotes the ensemble average and the error signal is
e(t)"d(t)#y(t), where y(t)":=

0
h
o
(q)r (t!q) dq and q is an arbitrary time variable. The

impulse response of the optimal "lter h
o
(t), by which the cost function J is minimized, can be

obtained from the Wiener}Hopf equation given by [2, 3]
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Figure 1. Wiener's problem of "nding a "lter h
o
(t) in order to minimize the mean square error when the desired

and received signals are ergodic and stationary random.
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where R
rr
(q)"E[r(t)r (t#q)] is the auto-correlation function of r(t), R

rd
(q)"

E[r(t)d(t#q)] is the cross-correlation function of r(t) and d(t), and the symbols q
1

and
q
2

denote arbitrary time lags. The minimum mean square error is given by
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where R
dd
(0)"E[Md(t)N2] is the mean square value of d(t). The Wiener}Hopf equation can

be solved easily in two special cases; when the constraint of causality is ignored and when
the received signal is white noise. If the constraint is ignored, the solution can be obtained
from the double-sided Fourier transform of equation (1) to give the unconstrained Wiener
"lter:

H
uo

(ju)"!

S
rd
( ju)

S
rr
(u)

, (3)

where S
rr

(u) is the auto-spectrum of the received signal, and S
rd

( ju) is the cross-spectrum of
the received and desired signals. There is no guarantee that the "lter's impulse response
h
uo

(t) is causal stable which means that it may not be physically realizable in the time
domain. However, the solution does give an upper bound on the reduction that can be
achieved by a causally constrained controller. Moreover, the unconstrained Wiener "lter is
the optimal controller for harmonic sound, and in this case the mean square error becomes
zero. When the received signal is white noise with zero mean and unit variance, r(t)"w(t),
the integral in equation (1) is eliminated because R

rr
(q

1
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)"d (q

2
!q

1
) and the impulse

response of the Wiener "lter is given by
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where R
wd

(q)"E[w(t)d(t#q)], and the minimum mean square error is
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. (5)

It should be noted that, when an impulse d(t) instead of white noise w(t) is used as the
received signal, the same results are obtained for equations (4) and (5) since again
R

rr
(q

1
!q

2
)"d (q

2
!q

1
) [2, 11]. Due to this, the analytical and numerical analysis

procedures for the active control of random sound and vibration considered in this paper
are signi"cantly simpli"ed.

When the analytical solution of equation (1) is causally constrained it can be obtained by
using the spectral factorization method, and the frequency response of the optimal "lter is



Figure 2. Wiener "lter comprising a whitening "lter and a sub-Wiener "lter.
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given by [2, 3]
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The functions S`
rr

( ju) and S~
rr

( ju) are the minimum causal stable and minimum
anti-causal stable parts of the auto-spectrum of the received signal, respectively, so that
S
rr
(u)"S`

rr
( ju)S~

rr
( ju), and [f]

`
denotes the causal part. Figure 2 shows a block diagram

of the optimal "lter, which can be formed by a cascade of a whitening "lter, 1/(S`
rr
( ju)) and

the sub-Wiener "lter H@
o
( ju)"![S

rd
( ju)/S~

rr
( ju)]

`
. Discrete time domain analysis is

necessary when the "lter is implemented by a digital control system or when computer
simulations are carried out, and this is described in Appendix A.

3. ACTIVE CONTROL OF SISO VIBRATING AND ACOUSTICAL SYSTEMS

Feedforward control of a vibrating system is shown schematically in Figure 3(a). The
system is excited by a primary force f

p
(t), and the system response, e(t), is minimized in the

mean square sense by the secondary force actuator f
s
(t) using the optimal controller H

o
( ju).

For convenience, a pure time delay q is used to model the electrical control system, and is
represented by e~+uq. The control system is drawn as a block diagram in Figure 3(b) where
the upper signal #ow is the primary path and the lower is the secondary path. The frequency
response functions of the mechanical plants in the primary and secondary paths are
represented by G

p
( ju) and G

s
( ju) respectively. Since the systems are linear time invariant

the positions of H
o
( ju) and G

s
( ju) have been exchanged to simplify the analysis, and the

time delay is moved into the primary path as a time advance term, e+uq.
To "nd the causal stable optimal "lter H

o
( ju) the theoretical framework described in

section 2 can be used. Since the excitation is white noise, f
p
(t) in Figure 3(b) can be

equivalently replaced by an impulse d(t). The problem is now transformed to the active
control of an impulse response and a deterministic approach can be applied to the stochastic
optimal control problem. As discussed in section 2, the Wiener "lter is represented as
a cascade of a whitening "lter and a sub-Wiener "lter as shown in Figure 4. The signals for
the Wiener "lter are r(t)"g

s
(t) and d(t)"g

p
(t#q) where g

s
(t) and g

p
(t) are the impulse

responses of G
s
( ju) and G

p
( ju) respectively. Thus, the problem is to "nd a causal stable

"lter which predicts the time-advanced impulse response of the primary path as
closely as possible in the mean square sense. Following the procedure described in section 2,
the optimal controller is written as H

o
( ju)"H@

o
( ju)/G`

s
( ju). If the secondary plant is

minimum phase, i.e., G
s
( ju)"G`

s
( ju), then the impulse d(t) passing through both G

s
( ju)

and 1/G`
s

( ju) remains the same; i.e., r@(t)"d(t) in Figure 4. If the plant is non-minimum
phase, the received signal r@(t) becomes the impulse response of an all-pass "lter [13, 14].



Figure 3. Feedforward control of random vibration: (a) feedforward control of a SISO system, (b) block diagram
representation.

Figure 4. Feedforward optimal controller using the inverse model.

Figure 5. An arbitrary signal d(t)"g
p
(t#q). Only the causal part when t*0 is used for the Fourier transform.
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For minimum phase secondary plant, the received signal of the sub-Wiener "lter H@
o
( ju) is

an impulse d (t) and using equation (4) H@
o
( ju)"![F(g

p
(t#q))]

`
, where F denotes the

Fourier transform and [f]
`

denotes the causal part as shown in Figure 5. Thus, the
optimum controller for a minimum phase secondary plant is given by

H
o
( ju)"!

[F(g
p
(t#q))]

`
G

s
( ju)

. (7)
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Since it is guaranteed to be causal, its impulse response is obtained from the inverse
Fourier transform of equation (7). Since r@(t)"d(t), the minimum mean square error J

o
can

be obtained from equation (5) by using h@
o
(q

1
) instead of h

o
(q

1
) to give

J
o
"R

dd
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. (8)

This can be normalized by the initial mean square error J
i
"R

dd
(0) due to the primary

force only to give

J @"
J
o

J
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"1!
P
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q
g2
p
(t) dt

P
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0

g2
p
(t) dt

, (9)

where R
dd
(0)":=

0
g2
p
(t) dt. The uncontrollable signal is the non-causal part of the

time-advanced primary impulse response d(t)"g
p
(t#q). As q increases, J@ increases and it

will "nally become unity. For a minimum phase secondary plant, the performance is solely
determined by the time delay q. If q"0, the optimal controller given in equation (7) is
simply H

o
( ju)"!G

p
( ju)/G

s
( ju). Thus, provided the secondary plant is minimum phase

and there is no control time delay, the optimal random disturbance controller is simply an
unconstrained Wiener "lter.

Figure 6(a) shows a feedback con"guration where the vibrating system is excited by
a single actuator f

p
(t) and the secondary actuator is driven by the error signal via a feedback

controller !C( ju). It can be represented by a block diagram as shown in Figure 6(b), and
the error signal can be written in the frequency domain as

E(u)"
D(u)

[1#G
s
( ju)C( ju)]

, (10)

where E(u) and D(u) are the Fourier transforms of signals e(t) and d(t) respectively. The
variables u and ju are used for denoting signals and systems respectively. To change the
feedback structure to an open-loop feedforward structure, the internal model control (IMC)
technique is used. This facilitates analysis using Wiener "lter theory as discussed by Elliott
and Sutton [15]. Following their work, the feedback controller !C( ju) is set to be

!C( ju)"
H

o
( ju)

[1#H
o
( ju)GK

s
( ju)]

, (11)
Figure 6. Feedback control of random vibration. (a) Feed back Control; (b) Block diagram representation.



Figure 7. Internal model control of an impulse response with a pure time advance on the primary path.

Figure 8. Wiener "lter using the inverse model. The operator * denotes the convolution integral.
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where H
o
( ju) is the optimal control "lter and G)

s
( ju) is an estimate of the secondary plant.

Substituting equation (11) into equation (10) with GK
s
( ju)"G

s
( ju), the control system is

transformed into a feedforward system and is written as

E(u)"[1#G
s
( ju)H

o
( ju)]D(u). (12)

The corresponding block diagram is shown in Figure 7. A pure time delay is again
assumed to model the electrical control process, and is transferred to the primary path as
the time advance term e+uq . Again, this is a Wiener "lter problem, and the optimal "lter is
obtained by using the inverse model as shown in Figure 8. Unlike feedforward control, in
feedback control both primary and secondary plants are required to design the inverse
model. Thus, the Wiener "lter is written as H

o
( ju)"H@

o
( ju)/G`

p
( ju)G`

s
( ju). If both

primary and secondary plants are minimum phase, i.e., G
p
( ju)"G`

p
( ju) and

G
s
( ju)"G`

s
( ju), the received signal to the sub-Wiener "lter is r@(t)"d(t) and the optimum

"lter is

H
o
( ju)"!

[F(g
p
(t#q))]

`
G

p
( ju)G

s
( ju)

. (13)

Comparing Figures 4 and 8, it can be seen that both sub-Wiener "lters H@
o
( ju) have

the same received signal d(t) and that they have to estimate the future signal of the
impulse response of the primary plant. If both primary and secondary plants are minimum
phase, the mean square error after control is the same as that for feedforward control
given in equation (9). If, in addition, the control time delay is zero, the Wiener "lter in
equation (13) becomes H

o
( ju)"!1/G

s
( ju), and the mean square error becomes zero.

However, such perfect control is not achievable because an instability occurs in the physical
controller !C( ju) in equation (11) [10]. IMC that is robust to model and input
uncertainty is generally required for practical implementation [16]. Nevertheless,
knowledge of the best achievable performance can be helpful in assessing di!erent control
schemes.



Figure 9. Active control of a single-degree-of-freedom vibrating system: (a) feedforward control; (b) feedback
control.
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4. ACTIVE CONTROL OF A MINIMUM PHASE VIBRATING SYSTEM

The active control of a single-degree-of-freedom minimum phase system is considered.
Both feedforward and feedback techniques are considered and are shown in Figure 9(a) and
9(b), where m, k, and c are the mass, spring constant, and damping of the system respectively.
The systems are excited by the white-noise primary force f

p
(t), and the velocity response e(t)

is minimized using the secondary force actuator f
s
(t). They are solved both analytically and

numerically using the theoretically framework described in the previous section. The plant
frequency response is given by [17]

G( ju)"
1

m

ju
(u2

n
!u2#j21u

n
u)

(14)

and the corresponding impulse response is given by

g(t)"!

u
n

mu
d

e~1u
n
t sin (u

d
t!u), t*0, (15)

where the damped natural frequency u
d
"u

n
J1!12, the natural frequency u

n
"Jk/m,

the damping coe$cient 1"c/2Jmk, and the phase angle u"tan~1J1!12/1.
Feedforward control is considered "rst. By replacing white noise by an impulse, the
approach described in section 3 is used to determine optimal controller. The Wiener "lter is
H

o
( ju)"H@

o
( ju)/G( ju) and h@

o
(t) is given by

h@
o
(t)"

u
n

mu
d

e!1u
n
q e~1u

n
t sin (u

d
t#u

d
q!u), t*0. (16)

Using the identity sin (A#B)"sin A cosB#cosA sin B, equation (16) becomes

h@
o
(t)"

u
n

mu
d

e~1u
n
qe~1u

n
t Msin(u

d
t) cos (u

d
q!u)#cos (u

d
t ) sin (u

d
q!u)N, t*0. (17)
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Now the one-sided Fourier transforms give the relationships [18]

P
=

0

e~at sin (bt) e~+utdt"
b

(( ju#a)2#b2) P
=

0

e~at cos (bt)e~+utdt"
( ju#a)

(( ju#a)2#b2)
, (18)

where a and b are arbitrary constants, so the Fourier transform of h@
o
(t) can be written as

H @
o
( ju)"

ju
(( ju#1u

n
)2#u2

d
) A!g(q)#

1

ju
u2

n
g
d
(q)B, (19)

where g(q) and g
d
(q) are the velocity and displacement impulse responses at time q,

respectively, and are given by g(q)"!(u
n
/mu

d
) e~1u

n
q sin(u

d
q!u) and g

d
(q)"

(1/mu
d
)e~1u

n
t sin(u

d
q) [17]. The optimal controller is thus given by

H
o
( ju)"!mg(q)#mu2

n
g
d
(q)

1

ju
, (20)

which contains both proportional and integral operators. Its inverse Fourier transform
gives

h
o
(t)"!mg(q)d (t)#mu2

n
g
d
(q) . (21)

As expected, when q"0, H
o
( ju)"!1 and h

o
(t)"!d(t) which means the secondary force

is equal but opposite to the primary signal, and the error is zero. From equation (15) the
square of the impulse response function can be written as

g2(t)"A
u

n
mu

d
B
2

e~21ut
n sin2 (u

d
t!u). (22)

Setting (t!u/u
d
)"q

1
, equation (22) can be written as g2(q

1
)"Aeaq1 sin2(bq

1
) where

A"(u
n
/mu

d
)2e21u

n
u/u

d , a"!21u
n
, and b"u

d
. Thus, equation (9) can be written as
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P

=

q!u/u
d

g2 (q
1
) dq

1

P
=
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d

g2(q
1
) dq

1

. (23)

Using the relationship [18]

P Aeat sin2 bt dt"
A

(a2#4b2) Aeat sin bt (a sin bt!2b cos bt)#
2b2

a
eatB (24)

one obtains

J@"1!e~21u
n
qA1#

21u2
n

u2
d

sin (u
d
q) sin (u

d
q!u)B , (25)

which can be written as

J @"1!e~4n1q@ A1#
21

1!12
sin (2n J1!12q@) sin (2nJ1!f2q@!u)B , (26)



Figure 10. The normalized mean square error J@ as a function of the normalized time delay q@"q/¹
n

and
damping ratio.
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where q@"q/¹
n

is the normalized delay to the natural period where the period of the
impulse response ¹

n
"2n/u

n
. The normalized mean square error J@ as a function of the

normalized time delay q@ and damping ratio f is shown in Figure 10. It can be seen that
perfect control is possible for the system with no damping, regardless of the delay. This is
because the impulse response of this system is a sinusoidal signal. If the oscillatory term
inside the brackets is neglected, equation (26) simpli"es to

J@:1!e~4n1q@. (27)

Thus, the mean square error is a function of 1q@. The smaller the value of 1q@, the better
the control performance, and perfect control is achieved when it is zero. This result is
similar to that obtained by Nelson et al. [7], who used white-noise excitation for a similar
system.

Feedback control using IMC is now considered for the system shown in Figure 9(b).
Following the procedure in section 3 equation (13) can be rewritten as

H
o
( ju)"

1

G2( ju)
H@

o
( ju), (28)

where H@
o
( ju) is given by equation (19). The resulting optimal controller is given by

H
o
( ju)"A

1
ju#A

0
#A

~1

1

ju
#A

~2

1

( ju)2
(29)

where A
1
"!m2g(q), A

0
"m2(u2

n
g
d
(q)!21u

n
g(q)), A

~1
"m2(21u3

n
g
d
(q)!u2

n
g(q)), and

A
~2

"m2u4
n
g
d
(q). Its impulse response is given by

h
o
(t)"A

1
d@(t)#A

0
d(t)#A

~1
#A

~2
t. (30)

where d@(t) is the unit doublet function.



Figure 11. Feedforward and feedback control of sound in a duct: (a) feedforward control; (b) feedback control.
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Since the plant is minimum phase, the normalized minimum mean square error for
feedback control is the same as given in equation (26). As with feedforward control of this
system, the signal processing delay is the most important factor in determining the
performance, and should be minimized as far as possible.

5. ACTIVE CONTROL OF A NON-MINIMUM PHASE ACOUSTICAL SYSTEM

Regardless of whether feedforward or feedback control is used for either a minimum or
non-minimum phase system, the Wiener "lter is the optimal controller. In an acoustical
system, the performance of the control system is determined by the wave propagation delay
in the primary and secondary paths which may have non-linear phase characteristics [19].
To show the wave propagation time di!erence between the paths more precisely, the phase
angle di!erence function may be introduced as

H(e+u)"LD(e+u)!LR(e+u), (31)

where the variable e+u denotes frequency dependency of sampled signals andL denotes the
phase angle. The desired and received signals D (e+u) and R(e+u) can be obtained from
Figure 3(b) for feedforward control, and from Figure 7 for feedback control. In this section,
control mechanisms are investigated using the phase angle di!erence function. The
one-dimensional acoustic system considered is shown in Figure 11. It is excited by white
noise through the primary source q

p
(t) located at x"0. Both feedforward and feedback

techniques are considered to minimize the sound pressure response at the error sensor, as
shown in Figure 11(a) and (b) respectively. The sound pressure at the error sensor located at
x
e
can be obtained by a summation of the "rst N modes given by [11]

p (x
e
, t)"

N
+
n/1

t
n
(x

e
)a

n
(t), (32)

where t
n
(x

e
) is the acoustic mode shape function at x

e
and a

n
(t) is the complex amplitude of

the nth mode. With the primary source at x"0 and the secondary source at x"¸
o
, the



TABLE 1

¹he acoustic duct data

Length Area Density Sound speed Sampling frequency
¸
o
(m) S

o
(m2) o

o
(kg/m3) c

o
(m/s) (Hz)

3)4 0)1]0)1 1)21 340 1000
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impulse responses of the primary and secondary plants are given by [11]

g
p
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o
o
c2
o
<

N
+
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t
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(x

e
)t

n
(0)A

n
(t), (33a)

g
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where the time-dependent term is given by

A
1
(t)"et@Ta when n"1,

A
n
(t)"!

u
n

u
d

e!1u
n
t sin (u

d
t!u

n
) when nO1.

¹
a
is the time constant for the "rst acoustic mode [20], u

n
"tan~1 J1!12

n
/1

n
is the phase

angle, and u
n

and u
d

are the undamped and damped natural frequencies respectively.
Regardless of which control technique is used, the acoustic pressure in equation (32) can be
expressed as the error signal for the Wiener "lter, and is written as p(x

e
, t)"d(t)#r(t)*h(t),

where the operator *denotes convolution. Since white noise is assumed as the excitation
signal, q

p
(t)"d(t). Thus, the desired and received signals are d(t)"g

p
(t) and r(t)"g

s
(t) is

feedforward control, and d(t)"g
p
(t), r(t)"g

p
(t) * g

s
(t) in feedback control. No electrical

control time delay is assumed so that the phase di!erence function is solely determined by
the non-minimum phase characteristics of the primary and secondary mechanical plants.

Physical data used for simulations are shown in Table 1. A time constant for the "rst
mode of 0)2 s and a damping ratio of 0)05 for the other modes were assumed. The impulse
responses given in equation (33a, b) were sampled at a frequency of 1000 Hz over 2 s and
were modelled as 2000-length FIR "lters. To avoid aliasing, only the "rst 10 acoustic modes
whose last mode is at 450 Hz were assumed to be excited. Optimal controllers were
calculated for 11 equidistant error microphone positions from x"0 to ¸

o
. Figure 12(a)

shows the performance of feedforward control according to the position of the microphone
plotted against the normalized duct length. At normalized locations less than 0)5, poor
performance is observed since a pulse takes longer to travel from the secondary source to
the error sensor than from the primary source (phase lead in the phase angle di!erence
function). At the mid-position, both pulses arrive at the same time (zero phase) and thus
perfect cancellation is achieved. At normalized locations greater than 0)5, where the error
sensor is closer to the secondary source (phase lag in the phase angle di!erence function),
a good performance is achieved, but not perfect minimization between positions 0)55 and
0)9. This is because the wave propagation inside the duct is dispersive due to damping [20].



Figure 12. Performance of feedforward and feedback control according to the location of the error sensor which
is normalized by the length of the duct: (a) feedforward control; (b) feedback control.
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At positions 0)95 and 1, there is collocation control where the secondary plant is minimum
phase.

The performance of feedback control according to the location of the microphone is
shown in Figure 12(b). It can be seen that the performance improves as the sensor gets closer
to the secondary source location at ¸

o
. Note in this case that the phase angle di!erence

function in equation (31) is entirely determined by the phase characteristics of the secondary
plant. As the error sensor gets closer to the secondary source position, the time delay of the
secondary path decreases. At the points 0)95 and 1, there is collocated control so that the
error becomes zero.



Figure 13. Phase angle di!erence functions at x
1
"0)75 ¸

o
: (a) feedforward control; (b) feedback control.
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Figure 13 shows the phase angle di!erence functions for both feedforward and feedback
control when the error sensor is located at the position 0)75. With feedforward control, the
phase angle di!erence function shows that there is a phase lag so that nearly perfect
minimization is achieved as shown in Figure 11(a). In feedback control, the phase di!erence
function shows a phase lead, and results in a poorer performance as shown in Figure 13.
This demonstrates that the phase angle di!erence function can be used as an indirect
measure of predicting control performance, regardless of whether feedforward or feedback
techniques are used.

6. CONCLUSIONS

The paper has considered the feedforward and feedback active control of stationary
random disturbances in SISO vibrating and acoustical systems. A deterministic
approach has been taken using Wiener "lter theory in a uni"ed framework to study optimal
control with both strategies. The advantages of this approach are that it provides an
easier understanding to the optimal control of random disturbances, and the calculation
time for simulations is greatly reduced since no time-consuming averaging processes
are required. Using this approach the active control of a single-degree-of-freedom
vibrating system and an acoustic duct has been studied. The results from theoretical and
numerical analyses demonstrate that the control performances with both feedforward and
feedback control deteriorate as the electric time delay and system damping increase.
The phase angle di!erence function was introduced to study the non-minimum phase
characteristics of the primary and secondary paths in the acoustic system. This was
used to investigate performance limitations imposed by the constraint of causality,
where it was shown that a larger phase lead results in a poorer control per-
formance.
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APPENDIX A: DISCRETE TIME DOMAIN REPRESENTATION OF
WIENER FILTER THEORY

The discrete form of the Wiener}Hopf equation is given by [21]

=
+
k/0

R
rr
[n!k]h

o
[k]"!R

rd
[n], n*0. (A1)

Unlike the continuous time Wiener}Hopf equation, equation (A1) has a closed-form
solution when the Wiener "lter is modelled as a "nite impulse response (FIR) "lter. If the
"lter has I coe$cients, then equation (A1) can be expressed in matrix form as

Aho"!b, (A2)
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where the (I]I) auto-correlation matrix A is a Toeplitz matrix, and is given by

A"

R
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(1) 2 R

rr
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R
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and the I length Wiener "lter coe$cient vector h
o
and the I length cross-correlation vector

b are given by

ho"Mh
o
(0) h

o
(1)2 h

o
(I!1)NT,

b"MR
rd

(0) R
rd

(1)2R
rd

(I!1)NT .

The matrix A is real-valued and symmetric since R
rr
(q)"R

rr
(!q). When the received

signal r(t) is spectrally rich as in random processes, the matrix A is guaranteed to be positive
de"nite [22]. The Wiener "lter can be obtained from equation (A2) to give

ho"!A~1b (A3)

and the minimum mean square error is

J
o
"R

dd
(0)!bTA~1b. (A4)

When the received signal is white noise, the correlation matrix A is the identity matrix. In
this case, the Wiener "lter is given by ho"!b, and thus the minimum mean square error is

J
o
"R

dd
(0)!hT

o ho. (A5)
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